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Let L={f ¥ C[0, 1] : f is non-decreasing, f(0)=0 and f(1)=1}. Let M be a
class of monotone polynomials of degree n or less. Then each f ¥L has a unique
best uniform (or L1) approximation from {p−1: p ¥ M 5L}. The special case for
M=Pn shows that the single-data-point location problem for a one-dimensional
domain has a unique solution (uniform or L1-norm). © 2002 Elsevier Science (USA)

Key Words: location problem; best approximations; uniqueness; non-linear;
monotone polynomials; approximation of inverses; uniform norm; L1-norm.

1. INTRODUCTION

As an example of the location problem [1], suppose an unmanned craft
were landed at a remote site. To determine its location, x0, local data, such
as the altitude, a(x0), are assessed by the craft. Space limitations only
permit the craft to store an approximation, p(x), to the surface topog-
raphy, {a(x): x ¥ X}. The location problem is to identify the function p,
from some class M, whose comparison to the collected data would result in
minimizing the error from the geographical position of the landing site.

A particular location problem results by specifying the five undefined
concepts above: (i) the domain space X, (ii) the data space, (Y, r), (iii) the
approximating functions M (with domain X and range Y), (iv) a function
D corresponding to a distance between a point in X and a subset of X, and
(v) a norm, c, on the real continuous functions defined on X. Given
a function a: X Q Y, The location problem is to identify the q ¥ M
that minimize {c(D(x, p−1(a(x))) : p ¥ M} (see the comment following the
introduction).

These choices provide a rich collection of theoretical problems and
potential applications. However, there were no setting in which the problem



(as stated above) had been solved. The best results identify properties of
the best approximations.

The strongest results are by Berdyshev [2–5] who assumed that X=[0, 1],
Y is the real line (i.e., one data point), M=Pn −P0, D(y, T)=max{|y−t|:
t ¥ T}, c is the sup-norm, and the real function f to be approximated is
continuous. In this setting (even when n=1), best location functions do not
always exist. If they do exist, they may not be unique (see Section 10).

For the current work, in addition to Berdyshev’s setting, we assume that
the approximates, M, are invertible functions contained in L. Then the
location problem is equivalent to finding a best approximation to an
invertible function f ¥L (where f=a−1 in the discussion above) from the
non-linear family M−1={p−1: p ¥ M}.

The approximating family here is the monotone polynomials. That is, let
1=l1 < l2 < · · · < ll [ n. Let s1=1. For each other i, let si be equal either
+1 or −1. The monotone polynomials that we use are

M={p : p ¥ Pn, si p (li) \ 0, for i=1, 2, ..., l, p(0)=0, p(1)=1}.

This paper shows that every continuous, f (f in L, resp.), has a unique
best uniform (L1, resp.) approximation from M−1.

Comment on the Description of the Location Problem. If p ¥L, then
p−1(a(x)) is well defined. The general setting is a little more complicated.
For dist r(a(x), p(X))=min{r(a(x), p(w)) : w ¥ X}, put

Ta, p(x)={y ¥ X : r(a(x), p(y))=dist r(a(x), p(X))}.

Then replace p−1(a(x)) in the discussion above with Ta, p(x).

Outline of the Paper. The main results of the paper are in Sections 7.
Sections 3, 4, 5, and 6 assemble preliminary results needed for the main
theorems. Section 7 contains the proof of uniqueness of best approxima-
tions from the inverses of monotone polynomials. Section 8 verifies that
best approximations exist, and Section 9 identifies the closure of the inverses
of all increasing polynomials. The last section contains remarks on the
results, examples, and comparisons to other results in the literature.

2. DEFINITIONS AND NOTATION

The polynomials of degree n or less are Pn, and P refers to the collection
of all polynomials.

The sign of a real number r is written sgn r. The closure of a set U is
written cl U, and the cardinality of U is written card U.

BEST APPROXIMATION BY THE MONOTONE 99



The critical set for a function f is ext(f)={x: |f(x)|=||f||.}.
A function f ¥ C[0, 1] is said to have an alternation of length m if there

are points 0 [ x1 < x2 < · · · < xm [ 1 such that for i=1, 2, ..., m−1,
sgn f(xi)=−sgn f(xi+1) ] 0. If in addition {xi}

m
i=1 ı ext(f), the alter-

nation is called an extremal alternation.
An n dimensional linear subspace H ı C[0, 1] is a Haar space if the only

function in H that vanishes at n points is the zero function.

3. PRELIMINARY COMPUTATIONS, L1[0, 1]

In this section the term best approximation refers to the L1-norm.

Proposition 3.1. For f and p invertible functions inL,

||f−p−1||1=||f−1−p||1.

Proof. If p(a)=A and p(b)=B, then >B
A p−1(y) dy=>b

a p−1(p(x))
pŒ(x) dx=>b

a xpŒ(x) dx. Integration by parts shows that >B
A p−1(y) dy=

Bb−Aa− >b
a p(x) dx.

The set {x: (f−p−1)(x) ] 0} is the union of a countable number of
disjoint open intervals {(ai, bi)}. Let Ai=f−1(ai)=p(ai) and Bi=f−1(bi)
=p(bi). From the line above,

F
Bi

Ai

|f−p−1| (y) dy=F
bi

ai
|f−1−p| (x) dx.

Summing over all the i’s proves the proposition. L

Corollary 3.2. For f in L; p1, p2 invertible functions in L, and
0 [ l [ 1,

||f−(lp1+(1−l) p2)−1||1 [ l ||f−p−1
1 ||1+(1−l) ||f−p−1

2 ||1.

Proof. For e > 0 fe(x)=[f(x)+ex]/[1+e] is an invertible function
in L. The corollary follows, since from Proposition 3.1, the result is true
for fe. L

Corollary 3.3. Let f be in L. Let H … P be a finite dimensional Haar
space. Let U be an open subset of H consisting of invertible functions.
Let U0=U 5L. If p−1 is a local best approximation to f from U−1

0 =
{p−1: p ¥ U0}, then p−1 is the unique global best approximation to f
from U−1

0 .
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Proof. From Proposition 3.1, 0 is a local best approximation f−1−p
from H0={h ¥ H : h(0)=0, and h(1)=0}. Since H0 is a linear space, p is
a global best approximation. Global best L1-approximations from H0 are
unique (e.g., see the proof of Jackson’s Theorem in [6, pp. 219–220]).
Hence if q−1 also were a best approximation from U−1

0 , then p−q would be
a best approximation to f−1−p. L

4. PRELIMINARY COMPUTATIONS, L.[0, 1]

Lemma 4.1. Let p1 and p2 be invertible functions in L. Let 0 < y < 1.
Put w=p−1

1 (y) and v=p−1
2 (y). The following are equivalent:

(i) w < v, (ii) p2(w) < p1(w), and (iii) p2(v) < p1(v).

Proof. Part (i) implies (ii): p2(w) < p2(v)=p2(p
−1
2 (y))=p1(p

−1
1 (y))

=p1(w). The other implications are proved similarly. L

Lemma 4.2. Let p1 and p2 be continuous increasing functions on [0, 1].
If 0 [ p−1

1 (y) < p−1
2 (y) [ 1, then for 0 < l < 1,

p−1
1 (y) < (lp1+(1−l) p2)−1 (y) < p−1

2 (y).

Proof. Forw ¥ [p−1
1 (y), p−1

2 (y)], the function pl(w)=(lp1+(1−l) p2)(w)
is increasing. We compute pl at the end points of this interval.

pl(p
−1
1 (y))=ly+(1−l) p2)(p

−1
1 (y)) < ly+(1−l) p2)(p

−1
2 (y))=y.

Similarly y < pl(p
−1
2 (y)). Hence for some v ¥ (p−1

1 (y), p−1
2 (y)), pl(v)=

(lp1+(1−l) p2)(v)=y. Therefore, (lp1+(1−l) p2)−1 (y)=v ¥ (p−1
1 (y),

p−1
2 (y)). L

Proposition 4.3. For i=1, 2, let pi ¥L be invertible. Let f ¥ C[0, 1].
If ||f−p−1

1 ||. [ 1 and ||f−p−1
2 ||. < 1, then for 0 < l < 1,

||f−(lp1+(1−l) p2)−1||. < 1.

Proof. For definiteness, assume throughout this proof that p−1
1 (y) [

p−1
2 (y). If p−1

1 (y)=p−1
2 (y)=x, then (lp1+(1−l) p2)(x)=y, and

(lp1+(1−l) p2)−1 (y)=p−1
1 (y)=p−1

2 (y).

BEST APPROXIMATION BY THE MONOTONE 101



Therefore

−1+f(y) < p−1
1 (y)=(lp1+(1−l) p2)−1 (y)=p−1

2 (y) < f(y)+1.

Otherwise from Lemma 4.2,

−1+f(y) [ p−1
1 (y) < (lp1+(1−l) p2)−1 (y) < p−1

2 (y) [ f(y)+1.

In either case,

−1+f(y) < (lp1+(1−l) p2)−1 (y) < f(y)+1,

and

||f−(lp1+(1−l) p2)−1||. < 1. L

The next two lemmas are known basic properties of Haar spaces written
in the forms needed for direct application in the proof of Proposition 4.6

Lemma 4.4. Let H ı C[0, 1] be a Haar space of dimension o. Let
0 [ x0 < x1 < · · · < xo [ 1. If h ¥ H is such that (−1) i h(xi) \ 0, then h=0.

Lemma 4.5. Let H ı C[0, 1] be a Haar space of dimension o. Suppose
that c [ o and that F1, ..., Fc are closed sets in [0, 1] such that if v ¥ Fi and
w ¥ Fi+1, then v < w. Then there is an h ¥ H such that h is positive on Fi for
even integers i, and h is negative on Fi for odd integers i.

Proposition 4.6. Let H ı C[0, 1] be a Haar space of dimension o. Let
U be an open subset of H consisting of invertible functions. Let U0=U 5L.
Let f ¥ C[0, 1] be such that f(0)=0 and f(1)=1. The following are
equivalent:

(i) p−1 is a local best approximation to f from {p−1: p ¥ U0},
(ii) p−1 is the unique global best approximation to f from {p−1: p ¥ U0},
(iii) f−p−1 has an extremal alternation of length o−1 in the open

interval (0, 1),
(iv) f−p−1 has 0 as a best approximation from H0={h ¥ H :

h(0)=0=h(1)}.

Proof. First suppose (iii), that f−p−1 has an extremal alternation of
length o−1 in (0, 1). If p−1

g ¥ {p−1: p ¥U0} were a global best approximation,
then p−1−p−1

g would be alternately non-positive and non-negative on the
points of the the union of {0, 1} with the points of the extremal alternation.
By Lemmas 4.1 and 4.7, p−1=p−1

g . Thus (iii) implies (ii).
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Part (ii) always implies (i).
Now suppose that f−p−1 does not have an extremal alternation of

length o−1 in (0, 1). Then there is a c [ o−2 and closed sets F1, ..., Fc in
(0, 1) such that

(1) v ¥ Fi and w ¥ Fi+1, then v < w,
(2) ext(f−p−1)=1 Fi, and
(3)[a] (f−p−1)(x)=||f−p−1|| if and only if x ¥ Fi for i even, or

[b] (f−p−1)(x)=||f−p−1|| if and only if x ¥ Fi for i odd.

We will assume that condition (3)[a] holds. Furthermore, since (f−p−1)(0)
=0=(f−p−1)(1), neither 0 nor 1 is in 1 Fi (by condition (2)). Therefore,
there is 0 < a < b < 1 such that [a, b] contains each Fi.

Since p−1 is order preserving, p−1(F1), ..., p−1(Fc) are correspondingly
ordered closed subsets of [p−1(a), p−1(b)]. Since H0 is a Haar space of
dimension o−2 on any closed subset of (0, 1), by Lemma 4.5 there is a h in
H0 that is positive on p−1(Fi) for even integers i, and is negative on the
p−1(Fi) for i odd. For all positive l, p+lh > p on p−1(Fi) for even integers i,
and p+lh < p on the p−1(Fi) for i odd. For sufficiently small l, p+lh is
invertible. From Lemma 4.1 (p+lh)−1 < p−1 on Fi for even integers i, and
(p+lh)−1 > p−1 on the Fi for odd indices. Hence, for sufficiently small l,
(p+lh)−1 is a better approximation to f then is p−1. This proves that (i)
implies (iii).

The equivalence of (iii) and (iv) is classically known. It could also be
proven with a simpler version of the argument above that showed the
equivalence of (iii) and (ii). L

5. PRELIMINARY COMPUTATIONS, MULTIPLICITY OF ZEROS

Section 6 will show that a particular subspace of monotone polynomials
is a Haar space. The proof uses a generalized form of Rolle’s Theorem
which we prove in this section.

Notation. For a function p, let

Z(p) (or Zp) be the zeros of p in [0, 1];
n(p) be the cardinality of Z(p);
m(p : z)=max{m a non-negative integer: (x−z)m is a factor of p};

and
t(p)=;z ¥ Z(p) m(p : z).
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Lemma (Classical Rolle’s Theorem). If 0 [ a1 < a2 < · · · < an(p) [ 1 are
the zeros of p ¥ Pn, then there exists C={c1, c2, ..., cn(p)−1} ı Z(pŒ) such
that:

(1) ai < ci < ai+1, and

(2) m(pŒ : ci) is an odd integer. Hence for an integer l \ 1,
(3) t(p (l)) \ t(p)−l.

Discussion. The objective of this section (Theorem 5.1) is to show that
if some higher order derivatives of p have zeros of prescribed multiplicity,
then the lower bound, t(p)−l, for t(p (l)) will be augmented by the sum of
the multiplicities of these zeros.

Example. If p(x)=(23 )6 x−(13 )6 (x−1)−(x− 1
3 )6, then t(p)=2, but

t(p (5)) \ t(p)−5+m(p (2) : 1
3 )=1.

Suppose that 0=l0 < l1 < l2 < · · · < ll [ n. The main result will be to
augment the lower bound, t(p)− l, for t(p (l)) by the sum of the multi-
plicities of the zeros of p (li). From Rolle’s Theorem it is apparent that (i)
the parity of the multiplicity of the zeros of the derivatives will be relevant,
and (ii) zeros of p and its derivatives that occur at 0 and 1 generally have a
different effect on the estimates of t(p (l)) then do zeros in (0, 1).

Notation. We set the notation for the general result. For i=0, 1, 2, ..., l
and j=1, 2, ..., bi, let

Bi={bi, j}
bi
j=1={b ¥ Z(p (li)) : m(p (li−1) : b) < li −li−1; if b ¥ (0, 1),

then m(p (li) : b) \ 2}.

If bi, j ¥1l
i=0 Bi 5 (0, 1), there is a positive even integer, mi, j, such that

m(p (li) : bi, j) \ mi, j. If bi, j=0, or if bi, j=1, put mi, j=m(p (li) : bi, j)

Purpose for the notation. The theorem will be that t(p)−ll, the lower
bound for t(p (ll)), will be augmented by the sum of the multiplicities of the
zeros in 1l

i=0 Bi. However, a point could be a zero of more than one of
the derivatives p (ll). We need to avoid multiple countings of such zeros.
For example, the polynomial p(x)=(23 )6 x−(13 )6 (x−1)−(x− 1

3 )6, has
m(p (2) : 1

3 )=4 and m(p (4) : 1
3 )=2. But augmenting the lower bound by the

sum of both of these would count the two highest order zeros twice. The
assumption above that m(p (li−1) : b) < li −li−1 was introduced to prevent
redundant counting of zeros.

Example. It is possible for a point to intermittently appear in the set of
zeros of higher order derivatives of p. As an example, if 0 < a < 1, and
p(x)=1+(x−a)3+(x−a)6; then a ¥ Z(p (d)) for d=1, 2, 4 and 5, but not
0 or 3.
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Theorem 5.1.

t(p (ll)) \ t(p)−ll+C
l

i=0
C
bi

j=1
mi, j.

Proof. The proof is by induction on l. We prove the induction step in
two parts. The first (Lemma 5.2) estimates n(p (li)); the second (Lemma 5.3),
t(p (li)). The theorem then is immediate from Lemma 5.3, since for
i=1, 2, 3, ..., l,

t(p (li)) \ t(p (li−1)))−(li −li−1)+C
bi

j=1
mi, j. L

Lemma 5.2. Let Ai={a ¥ Zp : m(p, a)=i}.

n(p (k)) \ C
k

i=1
i card(Ai)+(k+1) C

n

i=k+1
card(Ai)−k.

Proof. The proof is by induction. Since n(p)=;n
i=1 card(Ai), the set C

in Rolle’s Theorem has cardinality ;n
i=1 card(Ai)−1. We conclude that

n(pŒ) \ C
n

i=2
card(Ai)+C

n

i=1
card(Ai)−1

=card(A1)+2 C
n

i=2
card(Ai)−1.

Now we assume the induction hypothesis that

n(p (k−1)) \ C
k−1

i=1
i card(Ai)+k C

n

i=k
card(Ai)−(k−1).

From Rolle’s Theorem p (k) has n(p (k−1))−1 ‘‘new’’ zeros which are disjoint
from 1n

i=k+1 Ai.
We conclude that

n(p (k)) \ C
n

i=k+1
card(Ai)+n(p (k−1))−1

= C
n

i=k+1
card(Ai)+C

k−1

i=1
i card(Ai)+k C

n

i=k
card(Ai)−(k−1)+1. L

Let B={b1 , b2 , ..., bb}={b ¥ Zp (k) : if b ¥ (0, 1), m(p (k) : b) \ 2}−
{a ¥ Zp : m(p : a) \ k+1}.
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Hence, if bi ¥ B 5 (0, 1), there is a positive even integer, mi, such that
m(p (k) : bi) \ mi. If bi=0, or if bi=1, let mi=m(p (k) : bi).

Lemma 5.3. With {mi}
b
i=1 as defined immediately above,

t(p (k)) \ t(p)−k+C
b

i=1
mi.

Proof. Again let Ai={a ¥ Zp : m(p, a)=i}. From Rolle’s Theorem,
p (k) has at least n(p (k−1))−1 zeros other then the zeros in 1n

i=k+1 Ai. Let
C={c1, c2, ..., cn(p)−1} denote these zeros.

C has the following properties:

(i) card C \ n(p (k−1))−1,
(ii) C 5 [1n

i=k+1 Ai]=”, and
(iii) If c ¥ C, then m(p (k) : c) is odd,

t(p (k)) \ C
a ¥1n

i=k+1 Ai

m(p (k) : a)+ C
ci ¨ B

m(p (k) : ci)+ C
bi ¨ C

m(p (k) : bi)

+ C
bi ¥ C 5 B

m(p (k) : bi)

\ C
n

i=k+1
(i−k) card(Ai)+card(C−B)+ C

bi ¨ C
mi+ C

bi ¥ C 5 B
[mi+1]

\ C
n

i=k+1
(i−k) card(Ai)+card(C−B)+ C

bi ¨ C
mi+ C

bi ¥ C 5 B
mi

+card(C 5 B)

\ C
n

i=k+1
(i−k) card(Ai)+card C+ C

bi ¥ B
mi

\ C
n

i=k+1
(i−k) card(Ai)+[n(p (k−1))−1]+C

b

i=1
mi

\ C
n

i=k+1
(i−k) card(Ai)

+5C
k−1

i=1
i card(Ai)+k C

n

i=k
card(Ai)−(k−1)−16+C

b

i=1
mi

=C
k−1

i=1
i card(Ai)+C

n

i=k
i card(Ai)−k+C

b

i=1
mi

=t(p)−k+C
b

i=1
mi.
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6. THE HAAR SPACE DU

In the last section we estimated the total multiplicity of a function p
using the multiplicities, m(p, bi, j), of its zeros at various derivitives p (li). In
this section we specify, {bi, j} and mi, j and look at the space of polynomials
whose lith derivative have those prescribed multiplicities at the specified
points.

Definition of Du. Let u=({li}, {bi, j}, {mi, j}), where:

0=l0 < l1 < l2 < · · · < ll [ n;
bi, j ¥ [0, 1] for i=0, 1, 2, ..., l, and j=1, 2, ..., bi;
for all (i, j), mi, j is a positive integer, and for bi, j ¥ (0, 1), mi, j is a

positive even integer;
if bi, j=ba, v for i < a, then mi, j < la−li; and
for each c=1, 2, ..., n; ;n

i=c ;bi
j=1 mi, j [ n−lc.

Put u=({li}, {bi, j}, {mi, j}), and

Du={p ¥ Pn : p (li+k)(bi, j)=0; k=0, 1, ..., mi, j −1}.

Purpose of the Conditions in the Definition. The last condition guaran-
tees that Du −{0} is not empty. Without such an assumption, one might be
hypothesizing that a polynomial p ¥ Du (which has degree [ n) has a lcth
derivative with more than n−lc zeros (counting multiplicity).

Theorem 6.1. Du is a Haar space of dimension n+1−;l
i=0 ;bi

j=1 mi, j.

Proof. First we show that the dimension is at least as large as stated.
We define linear functionals on Pn. Put Li, k, j(p)=p(li+k)(bi, j). Then

Du={L−1
i, k, j(0) : i=0, 1, 2, ..., l; j=1, 2, ..., bi; k=0, 1, ..., (mi, j −1)}.

Since there are ;l
i=0 ;bi

j=1 mi, j linear functionals, the dimension of Du is
greater than or equal n+1−;l

i=0 ;bi
j=1 mi, j.

Now suppose that p ¥ Du has n+1−;l
i=0 ;bi

j=1 mi, j zeros. To complete
the proof of the theorem, we need to show that p=0. We have

t(p) \ n(p) \ n+1− C
l

i=0
C
bi

j=1
mi, j.
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By Theorem 5.1, for any 0 [ c [ l,

t(p (lc)) \ t(p)− lc+C
c

i=0
C
bi

j=1
mi, j

\ n+1− C
l

i=0
C
bi

j=1
mi, j −lc+C

c

i=0
C
bi

j=1
mi, j

\ n+1−lc+ C
l

i=c+1
C
bi

j=1
mi, j.

When c=l, the double sum is zero and we conclude

t(p (ll)) \ n−ll+1.

Since p (ll) ¥ Pn−ll , we deduce that p (ll)=0. Therefore, deg p [ ll−1.
When 0 [ c < l, we have hypothesized that ;l

i=c+1 ;bi
j=1 mi, j [ n−lc+1,

and we have

t(p (lc)) \ lc+1 −lc+1+2 C
l

i=c+1
C
bi

j=1
mi, j \ lc+1 −lc+1.

We apply this conclusion with c=l−1 and get

t(p (ll−1)) \ ll−ll−1+1.

Since

deg p (ll−1) [ deg p−ll−1 [ ll−1−ll−1,

we have that p (ll−1)=0. Continuing the same argument inductively, we
conclude that p=p(l0)=0. L

Let {li} be as before. Let p ¥ Pn be specified. Let {bi, j(p)}
bi
j=1 be equal

{b ¥ Z(p (li)) : p (li) ] 0; m(p (li−1) : b) < li −li−1; if b ¥ (0, 1),

then m(p (li) : b) is an even integer},

and let u(p)=({li}, {bi, j}, {m(p (li) : bi, j)}).

Theorem 6.2. Du(p) is a Haar space of dimension deg p−;l
i=c ;bi

j=1

m(p (li) : bi, j).
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Proof. Without loss of generality, we may assume that deg p=n. The
only hypothesis that needs to be verified is that for each c=0, 1, 2, ..., n;

C
l

i=c
C
bi

j=1
m(p (li) : bi, j) [ n−lc.

From Theorem 5.1,

t(p (ll)) \ t(p (c))−(ll−lc)+C
l

i=c
C
bi

j=1
m(p (li) : bi, j).

So if the condition were not met, there would be a c for which

t(p (ll)) > t(p (c))− ll+n \ n−ll.

But p (ll) has degree n−ll, and so it cannot have more than n−ll zero
(counting multiplicities). L

7. UNIQUENESS OF BEST APPROXIMATIONS

Let the monotone polynomials, M, and their inverses, M−1 be as defined
in the introduction. For p ¥ Pn, let u(p) be as defined before Theorem 6.2.

Lemma 7.1. If p ¥ M, then Du(p) is a Haar space of dimension deg p+1−
;l

i=1 ;bi
j=1 m(p (li); bi, j).

Proof. This is immediate from Theorem 6.2 since for a monotone
polynomial, p, all zeros of p (lc) (for c > 0) in (0, 1) have even multiplicity.

L

Theorem 7.2. Let f ¥ C[0, 1] be such that f(0)=0 and f(1)=1.
A local best uniform approximation, p−1, to f from M−1 is the unique
global best uniform approximation fromM−1.

Theorem 7.3. Let f ¥L. A local best L1 approximation, p−1, to f from
M−1 is the unique global best L1 approximation fromM−1.

Notation for the Proof. For p ¥ M put

T(p)=C
b ¥ B

m(p (li); b)=C
l

i=1
C
bi

j=1
m(p (li); bi, j).
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For K=0, 1, ..., n; and J=0, 1, ..., n let,

M−1
K, J={p−1 ¥ M−1 : deg p=n−J, and T(p)=K}.

Define (m, n) < (K, J) if m [ K. n [ J, and at least one of these inequalities
is a strict inequality.

The results preceding these theorems have been arranged so that
the proofs for both theorems above are identical. The proof will be by
induction on the (K, J) in M−1

K, J.

Proof. Since U={p ¥ Pn : T(p)=0, and deg p=n} is an open subset
of Pn, if p−1 were in M−1

0, 0, then, from Corollary 3.3 (for the L1-norm) and
Proposition 4.6 (for the uniform norm) p−1 would be the unique global
best approximation to f from from M−1.

For the induction hypothesis we assume that if p−1 ¥ M−1
m, n, for (m, n) <

(K, J), and p−1 is a local best approximation to f from M−1, then p−1 is
the unique global best approximation to f from M−1.

For the induction step, let p−1 ¥ M−1
K, J, be such that p−1 is a local best

approximation to f. Let V be a neighborhood of p−1 in M−1 such that if
v−1 ¥ V, then ||f−p−1|| [ ||f−v−1||. Now suppose that q−1 ¥ M−1 is such
that ||f−p−1|| \ ||f−q−1||. Then from Corollary 3.2 (for the L1-norm)
and Lemma 4.2 (for the uniform norm) for all 0 [ c [ 1, p−1

c =
[(1−c) p+cq]−1 ¥ M−1 is at least as good an approximation to f as
is p−1. For small c, p−1

c ¥ V. So for these small c, p−1
c must also be a best

local approximation to f.
The zeros of p (li)

c (counting multiplicity) are the common zeros of q (li)

and p (li) (since both derivatives are always non-positive—or they are always
non-negative). Also deg pc=max{deg p, deg q}. Hence if either there were
a zero of p (li) (counting multiplicity) that were not also a zero of q (li), or if
deg q were greater than deg p, then p−1

c would be in M−1
m, n for some

(m.n) < (K, J). From the induction hypothesis, p−1
c would be the unique

global best approximation to f. Since this would be true for all sufficiently
small c, we must have that p=q.

We have shown that if q−1 were a global best approximation to f, then

(1) all the zeros of p (li) (counting multiplicity) are also zeros of p (li),
and

(2) deg p \ deg q.

Let

u(p)=({li}
l
i=0; {bi, j}

l, bi
i=0, j=1; {m(p (li); bi, j)}

l, bi
i=0, j=1)

be defined for p as before Lemma 7.1.
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Then both q and p are in Du(p), and p is in the open subset of Du(p)

U={d ¥ Du(p) : T(d)=T(p), deg d=deg p}.

From Lemma 7.1, Du(p) is a Haar space. We again use Corollary 3.3 (for
the L1-norm) and Lemma 4.6 (for the uniform norm) to conclude p=q. L

8. EXISTENCE OF BEST APPROXIMATIONS

Lemma 8.1. M−1 is compact in any topology defined on C[0, 1] that is
weaker then the uniform norm.

Proof. Since M is a closed and bounded subset of Pn, we only need to
show that the map taking p to p−1 is continuous on M. Let pi Q p0, since
M is finite dimensional pi Q p0 uniformly. For y ¥ [0, 1],

y=pi(p
−1
i (y))=p0(p

−1
i (y))+[pi(p

−1
i (y))−p0(p

−1
i (y))].

The term in brackets goes to zero uniformly in y. So p0(p
−1
i (y)) converges

to y (uniformly in y). Since p−1
0 is uniformly continuous, applying it to

both sides implies that p−1
i (y) converges to p−1

0 (y) (uniformly in y). L

Corollary 8.2. Every f ¥ Lp[0, 1] (1 [ p [.) has a best Lp approxi-
mation in M−1.

9. THE UNIFORM CLOSURE OF M−1
.

Definition. Put

M.={p: p ¥ P, pŒ\ 0, p(0)=0, p(1)=1}, and M−1
. ={p−1: p ¥M.}.

Theorem 9.1. cl M−1
. =L.

Proof. It is apparent that cl M−1
. ıL. We show the converse by first

proving that functions with additional smoothness properties are in cl M−1
. .

First, a C1-function f in L is in cl M−1
. if fŒ > 0 for all y ¥ [0, 1].

Suppose that (f−1)Œ \ 2d > 0. Let e > 0. We want to show that there is a
p ¥ M. such that ||f−p−1|| < e. Let p be a polynomial that approximates
f−1 in the sense that: (i) ||(f−1)Œ−pŒ|| < d (so pŒ > d on [0, 1]),
(ii) ||(f−1)−p|| < ed, and (iii) p(0)=0 and p(1)=1.
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Let 0 [ y [ 1, and put x=f(y). From the Mean-Value Theorem there is
a z such that

p(p−1(y))−p(x)=pŒ(z)[p−1(y)−x]

and

p−1(y)=
y−p(x)
pŒ(z)

+x.

Therefore,

|f(y)−p−1(y)|=: x−5x+y−p(x)
pŒ(z)
6 : [ |f−1(x)−p(x)|

|pŒ(z)|
[ e.

Second, a C1-function f in L is in the closure of the C1-functions in L
that have a positive derivative. For any e > 0, let h(x)=[f(x)+e

2 x]/
[1+e

2]. Then h is a C1-function in L with a positive derivative such that,
||f−h|| [ e.

Third, L is in the closure of the C1-functions in L. To prove this let
K(x) be a non-negative, C1 function on the whole real line such that
>.−. K(x) dx=1. Put Kl(x)=lK(lx).

Extend f to the whole real line by letting f(x)=0 for x [ 0 and letting
f(x)=1 for 1 [ x.

Let (f f Kl)(x)=>.−. f(x−y) Kl(y) dy.
Since f is continuous on [0, 1], f f Kl are C1-functions that converges

to f uniformly [10, Theorem 3 and Corollary 1].
Furthermore, f f Kl is non-decreasing since if x1 < x2; then f(x1 −y) [

f(x2 −y), f(x1 −y) K(yl ) [ f(x2 −y) K(yl ), and f f Kl(x1) [ f f Kl(x2).
Hence,

hl(x)=
f f Kl(x)−f f Kl(0)
f f Kl(1)−f f Kl(0)

.

are C1-function in L that converge uniformly to f as lQ.. L

10. COMMENTS AND COMPARISONS

L1 Approximation from M−1. For any continuous function f we proved
that if ||f−p−1

i ||. [ 1, for i=1 and 2, and pi ¥ M, then ||f−(12 p1+
1
2 p2)−1||.

[ 1. We showed this was also true for the L1-norm if f were an increasing
function in L. If f is decreasing this implication is not necessarily true.
With an argument paralleling that in Section 3 one can show:
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Proposition 10.1. Let f(1−x), p1(x), and p2(x) be increasing functions
inL. Let 0 [ l [ 1.

||f−(lp1+(1−l) p2)−1||1 \ l ||f−p−1
1 ||1+(1−l) ||f−p−1

2 ||1.

Proof. Show first that for such functions ||f−p−1
i ||=1−||f−1−p||. L

Example. The inequality of the proposition can be a strict inequality.
For example, when f−1(x)=1−x, p1(x)=x, p2(x)=x2, and l=1

2 . This
follows since on the interval ((`5−1)/2, 1

2 ) we have that (1−x)−x < 0
and (1−x)−x2 > 0. Hence on that interval, |(1−x)−x|+|(1−x)−x2|
>|2(1−x)−x+−x 2|. Consequently, ||(1−x)−x||1+||(1−x)−x 2||1 >
||2(1−x)−x−x2||1. Hence, with this f, p1, and p2, 1−||f−1−lp1 −(1−l) p2||1
> l+(1−l)− ||lf−1−lp1 ||1 −||(1−l) f−(1−l) p2 ||1.

Monotone Approximation. Approximation from the convex set of
monotone polynomials is quite well understood. Best approximations, in
both the sup-norm and the L1-norm, are unique [7–8]. The proof here for
approximation from the inverses of monotone polynomials involves
showing that the error function has 0 as a best approximation from certain
classes of monotone polynomials. Some of the lemmas used here are
variations of results in monotone polynomial approximation.

The condition ;n
i=c ;bi

j=1 mi, j [ n−lc first introduced in Section 6, has
been called the Polya condition.

The Location Problem. V.I. Berdyshev did not assume growth restric-
tions (e.g., increasing) on either f or the approximates (other than being
non-constant). Hence there could be many ‘‘locations’’ where the actual
altitude (or the approximating altitude) is attained. That gives rise to both
non-existence and to non-uniqueness of best location functions.

Example (Non-existence). Let U(x)=1−`1− |x| be defined on
[−1, 1]. Consider approximating U from P1 −P0, the non-constant linear
polynomials. First, we observe that the minimum of the location error is
less than or equal one. Let pk=1+kx. As k Q. the location error for
each x ¥ [−1, 1] goes to one or less. Second, if there were a p ¥ P1 −P0

that produced a location error less then or equal one, then since
U(−1)=1=U(1) it is necessary that p(0)=1. So p=1+ax for some a.
But since UŒ(x) Q. as x approaches the end points of the interval
[−1, 1], there will be an interval of points near one of the end points
which have location errors exceeding one.
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Example (Non-unique). Let V(x)=|x| be defined on [−1, 1]. Again
consider approximating V from P1 −P0. Then 1+ax is a best approximating
location function for every a such that. |a| \ 1.
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